Two New Sesquiterpenes from *Euonymus nanoides*

Hong WANG, Xuan TIAN*, Yao Zu CHEN^{\dagger}

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new sesquiterpenes, 1β -(β -)furancarboxy-4 α -hydroxy-6 α , 13-diacetoxy-9 β - cinnamoyloxy- β -dihydroagarofuran(1)and 1 β , 6 α -di-(α -methyl)-butanoyl-4 α -hydroxy-9 β -enzoyloxy-13- acetoxy- β -dihydroagarofuran (2), were isolated from the seed oil of *Euonymous nanoides*. Their structures were elucidated on the basis of spectral data.

Keywords: Sesquiterpene, β-dihydroagarofuran, *Euonymous nanoides*.

The family *Celastraceae* is a rich source of dihydro- β -agarofuran sesquiterpene esters. In recent years these compounds have been of increasing interest due to their cytotoxic, antitumor-promoting, immunosuppressive, insecticidal, insect-antifeedant activities and for reversing multidrug resistance in cancer cells^{1, 2}. In a previous study, we have described the isolation of several dihydro- β -agarofuran from *Euonymus phellomana* Loes^{3,4}. Recently, we investigated the chemical constituents of the seed oil of *Euonymous nanoides (Celastraceae)*. Two new dihydro- β -agarofuran sesquiterpene polyol esters: **1** and **2 (Figure 1)** have been isolated from the seeds oil of *E. nanoides* growing in Luqu county, Gansu Province of China. In this paper, we deal with the structural elucidation of two new compounds.

Compound **1**, yellow oil, $[\alpha]_{D}^{20}$ +8.5 (c 0.750, CHCl₃), analyzed for C₃₃H₃₈O₁₁ by HR-FABMS:*m/z* 611.2494 [M+1]⁺ (Calcd. For C₃₃H₃₉O₁₁: 611.2487). IR spectrum revealed a characteristic ester absorption band at 1732 cm⁻¹ and a free hydroxyl absorption band at 3432 cm⁻¹. The NMR spectra suggested the presence of two acetate esters [¹H NMR δ 1.79 s, 2.20 s (2×3H); ¹³C NMR δ 20.6, 21.3, 169.7, 170.8 (2×Ac)], one cinnamo-yloxylate ester [¹H NMR δ 6.38 (d, 1H, *J*=15.6Hz), 7.40 (m, 2H), 7.47 (m 1H), 7.55 (m, 2H), 7.70 (d, 1H, *J*=15.6Hz); ¹³C NMR δ 117.7, 128.8, 130.5, 134.2, 145.8, 165.8], one (β-)furancarboxylate ester [¹H NMR δ 6.87 (d, *J*=1.2Hz), 7.41(d, *J*=1.2Hz), 8.27 (s, 3×1H); ¹³C NMR δ 109.7, 118.9, 144.0, 148.4, 161.9], and one free hydroxy group (¹H NMR δ 2.71 s).

[†] died; *E-mail: xuant@lzu.edu.cn

Hong WANG et al.

Figure 1 The structures of 1 and 2

The ¹H NMR (**Table 1**) of **1** showed the presence of three tertiary methyl groups at δ 1.34 (s, H-12), 1.46 (s, H-14), 1.49 (s, H-15). The signals in ¹H-¹H COSY spectrum at δ 5.66 (d, *J*=4.0Hz, H-1), 5.67 (s, H-6) and 5.28 (d, *J*=6.8Hz, H-9) were assigned to three protons attached to carbon atoms bearing secondary ester groups, while signals at δ 4.42 (d, *J*=12.8Hz, H-13a) and δ 5.04 (d, *J*=12.8Hz, H-13b) were assigned to the two protons attached to carbon atoms bearing primary ester groups. The ¹³C NMR spectrum (**Table 1**) of the parent skeleton of **1** showed three methyls at δ 24.2, 25.3 and 30.0, three methylene at δ 31.0, 33.6 and 40.5, one mrthylene attached to an oxygen function at δ 66.3, one methane at δ 43.3, three methines attached to an oxygen function at δ 69.0, 69.1 and 70.1, one quaternary carbon at δ 50.8,and three quaternary carbons attached to an oxygen at δ 69.5, 83.7 and 89.7, whose chemical shifts were very similar to those of reported dihydro- β -agarofurans^{2,4}. It was determined that compound **1** was a dihydro- β -agarofuran sesquiterpene substituted with two acetates, one β -furancarboxylate, one cinnamoyloxylate ester and one free hydroxyl.

¹H-¹³C long-range correlation spectrum (HMBC) was a useful tool to confirm the location of the ester groups. Thus, the carbonyl signal at δ 161.9 and 165.8 were correlated with the proton signals at δ 5.66 (H-1) and 5.28 (H-9), respectively, revealing that the β -furancarboxylate ester was located at C-1 and cinnamoyloxylate ester was located at C-9. Also, two acetate esters were positioned at C-6 and C-13, respectively, because the carbonyl signals at δ 169.7 and 170.6 were correlated with the proton signals of H-6 and H-13, respectively. As known that in this class of skeleton, H-1 and H-6 have axial stereochemistry^{5,6}. From the NOESY spectrum of **1** (**Figure 2**), the correlation between H-1 and H-9 indicated the presence of axial stereochemistry of H-9. From these data, compound **1** was identified as 1 β -(β -)furancarboxy-4 α -hydroxy-6 α , 13-diacetoxy-9 β - cinnamoyloxy- β -dihydroagarofuran.

Compound **2**, yellow oil, $[\alpha]_{D}^{20}$ +29.0 (c 0.700, CHCl₃), analyzed for C₃₄H₄₈O₁₀ by HR-ESIMS: *m/z* 639.3134 [M+Na]⁺ (Calcd. for C₃₄H₄₈O₁₀Na: 639.3140). IR spectrum revealed a characteristic ester absorption band at 1727 cm⁻¹ and a free hydroxyl absorption band at 3432 cm⁻¹. The NMR spectra suggested the presence of two α -methyl-butanoate esters [¹H NMR δ 0.55t (2×3H), 0.80 d (2×3H, *J*=6.8Hz), 0.92 m

	1			2	
No.	δ_{C} (DEPT)	$\delta_{\rm H} \left(J_{\rm Hz} \right)$	No.	δ_{C} (DEPT)	$\delta_{\rm H} \left(J_{\rm Hz} \right)$
1	70.1 (CH)	5.66 d (4.0)	1	70.0 (CH)	5.57 d (4.0)
2	31.0 (CH ₂)	2.31 m, 2.11 m	2	31.1 (CH ₂)	2.32 m, 2.15 m
3	40.5 (CH ₂)	1.15 m, 0.90 m	3	41.7 (CH ₂)	1.50 m, 2.01 m
4	69.5 (C)		4	69.4 (C)	
5	89.7 (C)		5	89.6 (C)	
6	69.1 (CH)	5.67 s	6	70.2 (CH)	5.69 s
7	43.3 (CH)	2.31m	7	43.4 (CH)	2.33m
8	33.6 (CH ₂)	2.45 m, 2.07 m	8	33.5 (CH ₂)	2.48 m, 2.08 m
9	69.0 (CH)	5.28 d (6.8)	9	68.3 (CH)	5.34 d (6.8)
10	50.8 (C)		10	51.2 (C)	
11	83.7 (C)		11	83.8 (C)	
12	30.0 (CH ₃)	1.34 s	12	29.9 (CH ₃)	1.34 s
13	66.3 (CH ₂)	5.04 d (12.8), 4.42 d (12.8)	13	66.2 (CH ₂)	4.87 d (12.8), 4.52 d (12.8)
14	25.3 (CH ₃)	1.46 s	14	26.5 (CH ₃)	1.43 s
15	24.2 (CH ₃)	1.49 s	15	24.4 (CH ₃)	1.46 s

 Table 1
 The NMR spectral data of compounds 1 and 2 (400MHz, CDCl₃)

(2×1H), 1.20 m (2×1H), 1.90 m (1H), 2.00 m (1H); ¹³C NMR δ 11.2, 11.6, 15.4, 16.5,25.1, 25.4, 40.6, 40.8, 174.4, 175.2 (2×MeBu)], one acetate ester [¹H NMR δ 2.21 s (3H); ¹³C NMR δ 21.4, 170.5], one benzoate ester [¹H NMR δ 7.45 (t, 2H, J=7.6Hz), 7.57 (t, 1H, J=7.2Hz), 8.05 (d, 2H, J=7.6Hz); ¹³C NMR δ 128.3 (2C), 129.4, 130.2 (2C), 133.3, 165.4] and one free hydroxyl group (¹H NMR δ 2.68 s). The NMR data (**Table 1**) for the parent ring system was very similar to those of 1, suggesting that 2 also contains the 1, 4, 6, 9, 13-pentasubstituted- β -dihydroagarofuran skeleton and the locations of the proton have been confirmed by the ¹H-¹H COSY spectrum. As with 1, the free hydroxyl group was at C-4 with equatorial orientation, and the ester group distributions were determined from the HMBC spectrum, which showed cross-peaks between H-9 (5.34 d J=6.8Hz) and the carbonyl at δ 165.4 of the benzoate ester, H-13 (4.52, 4.87, each 1H, d, J=12.8Hz) and the carbonyl at δ 170.5 of the acetate ester, and H-1 (5.57 d, J=4.0Hz), H-6 (5.69 s) and the carbonyls at δ 175.2 and 174.4 of two α -methylbutanoate esters, respectively. In NOESY spectrum of 2, the correlation between H-1 and H-9 indicated the presence of axial stereochemistry of H-9. Thus, compound 2 elucidated as 1 β , 6α -di-(α -methyl)- butanoyl- 4α -hydroxy- 9β -benzoyloxy- 13-acetoxy- β dihydroagarofuran.

Figure 2	The NOESY	correlations	of 1
----------	-----------	--------------	------

Hong WANG et al.

Acknowledgments

We would like to thank Prof. Ji-zhou Sun of Department of Biology, Lanzhou University for the authentication of the plant.

References

- 1. Z. B. M. Tincusi, I. A. Jimenez, A. G. Ravelo, R. Missico, J. Nat. Prod., 1998, 61, 1520.
- H. Wang, X. Tian, L. Yang, Y. Z. Chen, *Chin. Chem. Lett.*, **2000**, *11*, 331.
 H. Wang, L. Yang, X. Tian, Y. Z. Chen, *Pharmazie*, **2001**, 56, 889.
- 4. N. Wakabayashi, W. J. Wu, R. M. Waters, R. E. Redfern, G. D. M. Jr, A. B. Demilo, W. R. Lusby, D. Andrzejewski, J. Nat. Prod., 1988, 51, 537.
- 5. H. C. Huang, C. C. Shen, C. F. Chen, Y. C. Wu, Y. H. Kuo, Chem. Pharm. Bull., 2000, 48, 1079.
- W. Wu, M. Wang, J. Zhu, W. Zhou, Z. Hu, Z. Ji, J. Nat. Prod., 2001, 64, 364. 6.

Received 21 January, 2002

1066